CIENCIA DE DATOS DESDE CERO. SEGUNDA EDICIÓN

CIENCIA DE DATOS DESDE CERO. SEGUNDA EDICIÓN

PRINCIPIOS BÁSICOS CON PYTHON

GRUS, JOEL

42,50 €
IVA incluido
Editorial:
ANAYA MULTIMEDIA
Año de edición:
2023
Materia
Informatica
ISBN:
978-84-415-4720-9
Páginas:
416
Colección:
Títulos especiales
42,50 €
IVA incluido
Añadir a favoritos

Agradecimientos
Sobre el autor

Prefacio a la segunda edición
Convenciones empleadas en este libro
Uso del código de ejemplo
Sobre la imagen de cubierta

Prefacio a la primera edición
Ciencia de datos
Partir de cero

1. Introducción
El ascenso de los datos
¿Qué es la ciencia de datos?
Hipótesis motivadora: DataSciencester
Localizar los conectores clave
Científicos de datos que podría conocer
Salarios y experiencia
Cuentas de pago
Temas de interés
Sigamos adelante

2. Un curso acelerado de Python
El zen de Python
Conseguir Python
Entornos virtuales
Formato con espacios en blanco
Módulos
Funciones
Cadenas
Excepciones
Listas
Tuplas
Diccionarios
Contadores
Conjuntos
Flujo de control
Verdadero o falso
Ordenar
Comprensiones de listas
Pruebas automatizadas y assert
Programación orientada a objetos
Iterables y generadores
Aleatoriedad
Expresiones regulares
Programación funcional
Empaquetado y desempaquetado de argumentos
args y kwargs
Anotaciones de tipos
Bienvenido a DataSciencester
Para saber más

3. Visualizar datos
matplotlib
Gráficos de barras
Gráficos de líneas
Gráficos de dispersión
Para saber más

4. Álgebra lineal
Vectores
Matrices
Para saber más

5. Estadística
Describir un solo conjunto de datos
Correlación
La paradoja de Simpson
Otras advertencias sobre la correlación
Correlación y causación
Para saber más

6. Probabilidad
Dependencia e independencia
Probabilidad condicional
Teorema de Bayes
Variables aleatorias
Distribuciones continuas
La distribución normal
El teorema central del límite
Para saber más

7. Hipótesis e inferencia
Comprobación de hipótesis estadísticas
Ejemplo: Lanzar una moneda
Valores p
Intervalos de confianza
p-hacking o dragado de datos
Ejemplo: Realizar una prueba A/B
Inferencia bayesiana
Para saber más

8. Descenso de gradiente
La idea tras el descenso de gradiente
Estimar el gradiente
Utilizar el gradiente
Elegir el tamaño de paso adecuado
Utilizar descenso de gradiente para ajustar modelos
Descenso de gradiente en minilotes y estocástico
Para saber más

9. Obtener datos
stdin y stdout
Leer archivos
Raspado web
Utilizar API
Ejemplo: Utilizar las API de Twitter
Para saber más

10. Trabajar con datos
Explorar los datos
Utilizar NamedTuples
Clases de datos
Limpiar y preparar datos
Manipular datos
Redimensionar
Un inciso: tqdm
Reducción de dimensionalidad
Para saber más

11. Machine learning (aprendizaje automático)
Modelos
¿Qué es el machine learning?
Sobreajuste y subajuste
Exactitud
El término medio entre sesgo y varianza
Extracción y selección de características
Para saber más

12. k vecinos más cercanos
El modelo
Ejemplo: el conjunto de datos iris
La maldición de la dimensionalidad
Para saber más

13. Naive Bayes
Un filtro de spam realmente tonto
Un filtro de spam más sofisticado
Implementación
A probar nuestro modelo
Utilizar nuestro modelo
Para saber más

14. Regresión lineal simple
El modelo
Utilizar descenso de gradiente
Estimación por máxima verosimilitud
Para saber más

15. Regresión múltiple
El modelo
Otros supuestos del modelo de mínimos cuadrados
Ajustar el modelo
Interpretar el modelo
Bondad de ajuste
Digresión: el bootstrap
Errores estándares de coeficientes de regresión
Regularización
Para saber más

16. Regresión logística
El problema
La función logística
Aplicar el modelo
Bondad de ajuste
Máquinas de vectores de soporte
Para saber más

17. Árboles de decisión
¿Qué es un árbol de decisión?
Entropía
La entropía de una partición
Crear un árbol de decisión
Ahora, a combinarlo todo
Bosques aleatorios
Para saber más

18. Redes neuronales
Perceptrones
Redes neuronales prealimentadas
Retropropagación
Ejemplo: Fizz Buzz
Para saber más

19. Deep learning (aprendizaje profundo)
El tensor
La capa de abstracción
La capa lineal
Redes neuronales como una secuencia de capas
Pérdida y optimización
Ejemplo: XOR revisada
Otras funciones de activación
Ejemplo: FizzBuzz revisado
Funciones softmax y entropía cruzada
Ejemplo: MNIST
Guardar y cargar modelos
Para saber más

20. Agrupamiento (clustering)
La idea
El modelo
Ejemplo: Encuentros
Eligiendo k
Ejemplo: agrupando colores
Agrupamiento jerárquico de abajo a arriba
Para saber más

21. Procesamiento del lenguaje natural
Nubes de palabras
Modelos de lenguaje n-Gram
Gramáticas
Un inciso: muestreo de Gibbs
Modelos de temas
Vectores de palabras
Redes neuronales recurrentes
Ejemplo: utilizar una RNN a nivel de carácter
Para saber más

22. Análisis de redes
Centralidad de intermediación
Centralidad de vector propio
Grafos dirigidos y PageRank
Para saber más

23. Sistemas recomendadores
Método manual
Recomendar lo que es popular
Filtrado colaborativo basado en usuarios
Filtrado colaborativo basado en artículos
Factorización de matrices
Para saber más

24. Bases de datos y SQL
CREATE TABLE e INSERT
UPDATE
DELETE
SELECT
GROUP BY
ORDER BY
JOIN373
Subconsultas
Índices
Optimización de consultas
NoSQL
Para saber más

25. MapReduce
Ejemplo: Recuento de palabras
¿Por qué MapReduce?
MapReduce, más general
Ejemplo: Analizar actualizaciones de estado
Ejemplo: Multiplicación de matrices
Un inciso: Combinadores
Para saber más

26. La ética de los datos
¿Qué es la ética de los datos?
No, ahora en serio, ¿qué es la ética de datos?
¿Debo preocuparme de la ética de los datos?
Crear productos de datos de mala calidad
Compromiso entre precisión e imparcialidad
Colaboración
Capacidad de interpretación
Recomendaciones
Datos sesgados
Protección de datos
En resumen
Para saber más

27. Sigamos haciendo ciencia de datos
IPython
Matemáticas
No desde cero
Encontrar datos
Haga ciencia de datos

Índice alfabético

Para aprender de verdad ciencia de datos, no solamente es necesario dominar las herramientas (librerías de ciencia de datos, frameworks, módulos y kits de herramientas), sino también conviene comprender las ideas y principios subyacentes. Actualizada para Python 3.6, esta segunda edición de Ciencia de datos desde cero muestra cómo funcionan estas herramientas y algoritmos implementándolos desde el principio. Si ya tiene aptitudes para las matemáticas y ciertas habilidades de programación, el autor, Joel Grus, le ayudará a familiarizarse con las mates y las estadísticas, que son el núcleo de la ciencia de datos, y con las habilidades informáticas necesarias para iniciarse como científico de datos. Repleto de nueva información sobre deep learning (aprendizaje profundo), estadísticas y procesamiento del lenguaje natural, este libro actualizado le muestra cómo sacar lo mejor de la sobreabundancia de datos que actualmente nos rodea.

Artículos relacionados

  • PLANTILLAS DAX PARA POWER BI Y POWER PIVOT
    POMARES MEDRANO, JOSÉ MANUEL
    Power BI y Excel son herramientas ideales para crear informes, dashboards o cuadros de mando a partir de grandes cantidades de datos. Sin embargo, es muy frecuente un aprovechamiento escaso de sus posibilidades de análisis. Puesto que tanto Excel (mediante su complemento Power Pivot) como Power BI pueden trabajar con modelos de datos tabulares, ambas aplicaciones nos ofrecen la...
    Disponible en tienda

    29,95 €

  • ESCALANDO AGILIDAD CON SAFE
    GALÁN CARRETERO, ÁNGEL
    Guía esencial para navegar por el complejo pero poderoso mundo del marco de trabajo ágil de Scaled Agile. Este libro no solo desglosa la teoría detrás de SAFe, sino que va más allá al proporcionar una visión práctica, rica en experiencias reales, técnicas y soluciones a los desafíos en las diferentes implementaciones que nos podemos encontrar.Comenzando con una sólida base teór...
    Disponible en tienda

    19,95 €

  • RETOS DE PROGRAMACIÓN CON JUEGOS. PYTHON Y JAVA
    NADAL, MARIONA
    Aprender a programar no siempre es fácil, pero sí podemos hacerlo entretenido: darles sentido a nuestros primeros programas y desarrollar pequeños juegos que nos ayuden, de forma práctica, a afianzar nuestro aprendizaje y que podremos utilizar luego para jugar un ratito. Java y Python son los dos lenguajes de programación más usados y, con este libro, no necesitas decidirte por...
    Disponible en tienda

    29,95 €

  • LAS REDES SON NUESTRAS
    GUERRERO, MARTA
    Internet era nuestra. Nos la robaron entre quienes viven de extraer nuestros datos personales y quienes necesitan que se extienda el odio, pero antes todo ese espacio era nuestro. Nos han contado internet como un ejemplo de éxito empresarial para que nos olvidemos del papel de millones de protagonistas que no suelen aparecer en los relatos y que son parte fundamental del desarr...
    Disponible en tienda

    21,50 €

  • INTRODUCCIÓN AL APRENDIZAJE AUTOMÁTICO CON ORANGE
    CASAS, JOSÉ MANUEL / SÁNCHEZ LASHERAS, FERNANDO / BONAVERA, LAURA / SUÁREZ GÓMEZ, SERGIO LUIS
    Aprender acerca de la inteligencia artificial (IA) y hacer realidad sus primeros modelos ahora es más fácil que nunca. Introducción al aprendizaje automático con Orange le guiará en este camino a través de una de las herramientas de software de código abierto más potentes de la actualidad, Orange Data Mining. En este libro encontrará una explicación detallada sobre Orange Data ...
    Disponible en tienda

    17,50 €

  • REVIT 2025
    MORET COLOMER, SALVADOR
    Este libro está basado en la experiencia profesional del autor como arquitecto redactor de proyectos en BIM, pero también en su labor docente, con más de 10 000 horas de formación impartidas solo en Revit. El contenido está enfocado de una forma muy práctica para aprender el programa, y tiene un objetivo muy claro: aportar los conocimientos necesarios para desarrollar un proyec...
    Disponible en tienda

    35,95 €